

1/7

Security Advisory

HTTP – REQUEST SMUGGLING
PUBLISHED: MARCH 19, 2020 | LAST UPDATE: MAY 12, 2022

SUMMARY
Web application security scans have indicated a potential security weakness when ACOS ADCs are used with some backend web
servers. Referred to as HTTP Request Smuggling, this weakness is described in CWE-444 [1] and is addressed in this document.

Researchers have discovered additional methods to perform HTTP Request Smuggling in Web Proxies especially when HTTP/2 is
supported at the Proxy for an HTTP/1 backend webserver. This issue is further described in CERT Vulnerability Note VU#357312
[2].

ABOUT HTTP REQUEST SMUGGLING
A deployed ADC configuration, which includes back-end HTTP servers, can be exposed to HTTP request smuggling. CWE-444
provides 2 examples of how this weakness can be exploited. In Example 1, a malformed HTTP request is sent to a website that
includes a proxy server and a web server with the intent of poisoning the cache to associate one webpage with another malicious
webpage.

In Example 2, a malformed HTTP request is sent to a website that includes a web server with a firewall with the intent of
bypassing the web server firewall to smuggle malicious code into the system.

With HTTP/2 enabled or with specially crafted requests that include invalid characters, such as carriage-returns and newlines,
requests may be forwarded as HTTP/1 requests that include the malicious data resulting in HTTP Request Smuggling.

AFFECTED RELEASES
This is not a vulnerability in ACOS. A deployed configuration which includes a back-end server and any intermediate HTTP
proxying function, can be exposed to HTTP request smuggling. This exposure can be mitigated for ACOS 4.1.1, 4.1.4-GR1, 5.1 and
5.2.x release families as discussed below. Older deployments should upgrade to an ACOS release family that supports mitigations
for this weakness.

WORKAROUNDS AND MITIGATIONS
The HTTP request smuggling can be mitigated by enabling the ACOS WAF (Web Application Firewall) feature and adding an ACOS
aFlex rule.

Example 1 is mitigated by using the WAF http-check or http-protocol-check feature which can verify the length information
and drops requests with multiple Content-Length headers. The Example 2 is mitigated by using the aFlex rule below to drop POST
requests without Content-Type header present.

Although other companies suggest disabling connection-reuse to mitigate HTTP Request Smuggling exposures, A10 Networks’
view is that this can help in some cases but is limited in mitigation and will impact performance.

HTTP/2 and invalid character request smuggling mitigations necessitate an additional aFlex script and/or enabling enhanced
http-protocol-check features available from ACOS release 5.2.1-P4. For the most robust and capable mitigations, consider
updating to ACOS 5.2.1-P4 or later.

NOTE: Enabling the ACOS WAF function with default settings could negatively impact the web service being protected. Please
refer to the ACOS Web Application Firewall guide to ensure appropriate configuration and settings for the desired operations of
the web service.

NOTE: Adding ACOS WAF and aFlex scripts to provide HTTP Request Smuggling mitigations could impact overhead and
throughput performance of the ACOS system.

NOTE: Mitigations are indicated below for HTTPS on TCP port 443. They can also be applied for HTTPS on other ports, as well as
HTTP on TCP port 80 or other ports.

2/7

Security Advisory

MITIGATIONS USING ACOS 4.1.1 AND 4.1.4-GR1
For deployments with ACOS 4.1.1 or 4.1.4-GR1 release families, this issue can be mitigated using the following procedure.

1. Add the following aFlex rules.

aflex create post-no-content-type

when HTTP_REQUEST {

 if { [HTTP::method] equals "POST" } {

 if { not [HTTP::header exists "Content-Type"] } {

 HTTP::respond 403 content "<html><head><title>Invalid

request</title></head><body>Invalid request<p></body></html>"

 }

 }

}

.

aflex create multiple-content-length-check

when HTTP_REQUEST {

 if {[HTTP::header exists "Content-Length"] && [HTTP::header exists "Transfer-Encoding"]} {

 reject

 }

}

.

2. Configure WAF to perform HTTP checking.

waf template wafcheck

 http-check

3. Configure the virtual server to use the WAF template and the aFlex rule.

slb virtual-server vs-11-1 10.1.11.1

 port 443 https

 aflex post-no-content-type

 aflex multiple-content-length-check

 template waf wafcheck

3/7

Security Advisory

MITIGATIONS USING ACOS 5.1
For deployments with the ACOS 5.1 release family, this issue can be mitigated using the following procedure.

1. Add the following aFlex rule.

aflex create post-no-content-type

when HTTP_REQUEST {

 if { [HTTP::method] equals "POST" } {

 if { not [HTTP::header exists "Content-Type"] } {

 HTTP::respond 403 content "<html><head><title>Invalid

request</title></head><body>Invalid request<p></body></html>"

 }

 }

}

.

2. Configure WAF to perform HTTP checking.

waf template wafcheck

 http-protocol-check

 multiple-content-length

3. Configure the virtual server to use the WAF template and the aFlex rule.

slb virtual-server vs-11-1 10.1.11.1

 port 443 https

 aflex post-no-content-type

 template waf wafcheck

MITIGATIONS USING ACOS 5.2.X
For deployments with the ACOS 5.2.x release family, this issue can be mitigated using the following procedure.

1. Configure WAF to perform HTTP checking.

waf template wafcheck

 http-protocol-check

 post-without-content-type

 body-without-content-type

 multiple-content-length

2. Configure the virtual server to use the WAF template

slb virtual-server vs-11-1 10.1.11.1

 port 443 https

 template waf wafcheck

4/7

Security Advisory

ADDITIONAL MITIGATIONS USING ACOS 5.2.X AND 4.1.4-GR1
For deployments with ACOS 5.2.1 or 4.1.4-GR1 release families, HTTP Request smuggling exposures related to HTTP/2 and/or
invalid characters can be further mitigated using the following procedures.

ACOS 5.2.1-P3/PRIOR AND 4.1.4-GR1

For 5.2.1-P3 and prior, as well as 4.1.4-GR1 releases, include the aFlex script.

1. Also add the following aFlex rule.

aflex create SmugglingPrevention_http1and2_521p3_n_prior

when HTTP_REQUEST {

 if { [HTTP::version] equals "2.0" } {

 #If necessary, the following return code and respond string can be customized

 set returnCode 403

 set resp "<html><title>Request Denied!</title><body><center><h1>Request Denied!</h1><p>If you

have any questions contact the admin.</center></body></html>"

 foreach header [HTTP::header names] {

 set value [HTTP::header values $header]

 set count 0

 if { ($value contains "\r") or ($value contains "\n") or ($header matches

{[Tt][Rr][Aa][Nn][Ss][Ff][Ee][Rr][-_][Ee][Nn][Cc][Oo][Dd][Ii][Nn][Gg]*}) or ($header matches

{[Cc][Oo][Nn][Tt][Ee][Nn][Tt][-_][Ll][Ee][Nn][Gg][Tt][Hh]*}) } {

 #Potential Special Character Smuggling or TE/CL header Detected

 HTTP::respond $returnCode content $resp

 HTTP::close

 }

 foreach header1 [HTTP::header names] {

 set value1 [HTTP::header values $header]

 if { ($header equals $header1) and ($value equals $value1) } {

 set count [expr $count + 1]

 }

 }

 if { ($count >= 2) and ($header matches {[Hh]ost}) } {

 #Duplicated host headers are detected

 HTTP::respond $returnCode content $resp

 HTTP::close

 }

 }

 }

 if { ([HTTP::version] equals "1.0") or ([HTTP::version] equals "1.1") } {

 set count 0

 #If necessary, the following return code and respond string can be customized

 set returnCode 403

 set resp "<html><title>Request Denied!</title><body><center><h1>Request Denied!</h1><p>If you

have any questions contact the admin.</center></body></html>"

 foreach header [HTTP::header names] {

 set value [HTTP::header values $header]

 log "$header"

 if { ($value contains "\r") or ($value contains "\n") or ($header contains "\r") or

($header contains "\n") or ($header contains "\\") or ($header contains "%") or ($header contains "?")

or ($header contains "\(") or ($header contains "\)") or ($header contains "\<") or ($header contains

"\>") or ($header contains "\@") or ($header contains "\,") or ($header contains "\;") or ($header

contains "\<") or ($header contains "\"") or ($header contains "\/") or ($header contains "\[") or

($header contains "\]") or ($header contains "\=") or ($header contains "\{") or ($header contains

"\}") or ($header contains "\t") } {

 HTTP::respond $returnCode content $resp

 HTTP::close

 }

 if { ($header matches {[Tt][Rr][Aa][Nn][Ss][Ff][Ee][Rr][-

_][Ee][Nn][Cc][Oo][Dd][Ii][Nn][Gg]*}) or ($header matches {[Cc][Oo][Nn][Tt][Ee][Nn][Tt][-

_][Ll][Ee][Nn][Gg][Tt][Hh]*}) } {

 set count [expr $count + 1]

 }

 if { ($count >= 2) } {

5/7

Security Advisory

 #TE+CL or TE+TE or CL+CL

 HTTP::respond $returnCode content $resp

 HTTP::close

 }

 }

 }

}

.

2. Further configure the virtual server to use this aFlex rule.

slb virtual-server vs-11-1 10.1.11.1

 port 443 https

 aflex SmugglingPrevention_http1and2_521p3_n_prior

ACOS 5.2.1-P4 AND LATER

For 5.2.1-P4 or later releases, include the HTTP SLB template and aFlex script as follows.

1. Add the following slb template.

slb template http http-check

 http-protocol-check

 h2up-content-length-alias drop

 malformed-h2up-header-value drop

 malformed-h2up-scheme-value drop

 h2up-with-transfer-encoding drop

 multiple-content-length drop

 multiple-transfer-encoding drop

 transfer-encoding-and-content-length drop

 get-and-payload drop

 h2up-with-host-and-auth drop

2. Remove the following WAF template setting to avoid duplication between WAF and HTTP protocol checks.

waf template wafcheck

 http-protocol-check

 no multiple-content-length

3. Add the following aFlex rules.

aflex create SmugglingPrevent_http1and2_521p4_n_later

when HTTP_REQUEST {

 if { [HTTP::version] equals "2.0" } {

 #If necessary, the following return code and respond string can be customized

 set returnCode 403

 set resp "<html><title>Request Denied!</title><body><center><h1>Request Denied!</h1><p>If you

have any questions contact the admin.</center></body></html>"

 foreach header [HTTP::header names] {

 set value [HTTP::header values $header]

 set count 0

 foreach header1 [HTTP::header names] {

 set value1 [HTTP::header values $header]

 if { ($header equals $header1) and ($value equals $value1) } {

 set count [expr $count + 1]

 }

 }

 if { ($count >= 2) and ($header matches {[Hh]ost}) } {

 #Duplicated host headers are detected

 HTTP::respond $returnCode content $resp

 HTTP::close

 }

 }

 }

 if { ([HTTP::version] equals "1.0") or ([HTTP::version] equals "1.1") } {

 set count 0

 #If necessary, the following return code and respond string can be customized

 set returnCode 403

 set resp "<html><title>Request Denied!</title><body><center><h1>Request Denied!</h1><p>If you

have any questions contact the admin.</center></body></html>"

6/7

Security Advisory

 foreach header [HTTP::header names] {

 set value [HTTP::header values $header]

 #Drop http requests with special character in the name or value

 if { ($value contains "\r") or ($value contains "\n") or ($header contains "\r") or

($header contains "\n") or ($header contains "\\") or ($header contains "%") or ($header contains "?")

or ($header contains "\(") or ($header contains "\)") or ($header contains "\<") or ($header contains

"\>") or ($header contains "\@") or ($header contains "\,") or ($header contains "\;") or ($header

contains "\<") or ($header contains "\"") or ($header contains "\/") or ($header contains "\[") or

($header contains "\]") or ($header contains "\=") or ($header contains "\{") or ($header contains

"\}") or ($header contains "\t") } {

 HTTP::respond $returnCode content $resp

 HTTP::close

 }

 #Disable content-encoding: chunked header

 #Do this if necessary

 if { ($header matches {[Cc][Oo][Nn][Tt][Ee][Nn][Tt][-_][Ee][Nn][Cc][Oo][Dd][Ii][Nn][Gg]})

or ($header contains {[Cc][Oo][Nn][Tt][Ee][Nn][Tt][-_][Ee][Nn][Cc][Oo][Dd][Ii][Nn][Gg]}) } {

 if { ($value matches {[Cc][Hh][Uu][Nn][Kk][Ee][Dd]}) } {

 HTTP::respond $returnCode content $resp

 HTTP::close

 }

 }

 #Similarly, we could disable custom headers such as Nothing-Interesting if necessary

 if { ($header matches {[Nn][Oo][Tt][Hh][Ii][Nn][Gg][-

_][Ii][Nn][Tt][Ee][Rr][Ee][Ss][Tt][Ii][Nn][Gg]}) } {

 HTTP::respond $returnCode content $resp

 HTTP::close

 }

 }

 }

}

.

4. Configure the virtual server to use the slb template and the aFlex rule.

slb virtual-server vs-11-1 10.1.11.1

 port 443 https

 aflex SmugglingPrevent_http1and2_521p4_n_later

 template http http-check

 template waf wafcheck

7/7

Security Advisory

SOFTWARE UPDATES
Software updates that address these vulnerabilities are or will be published at the following URL:

http://www.a10networks.com/support/axseries/software-downloads

VULNERABILITY DETAILS
The following table shares brief descriptions for the vulnerabilities addressed in this document.

Vulnerability ID Description
A10-2020-0001 When malformed or abnormal HTTP requests are interpreted by one or more entities in the data flow

between the user and the web server, such as a proxy or firewall, they can be interpreted
inconsistently, allowing the attacker to "smuggle" a request to one device without the other device
being aware of it.

RELATED LINKS
Ref # General Link
[1] CWE-444 Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')
[2] HTTP Request Smuggling in Web Proxies Vulnerability Note VU#357312

ACKNOWLEDGEMENTS
None

MODIFICATION HISTORY
Revision Date Description
1.0 2020-03-19 Initial Publication
2.0 2021-07-23 Add mitigation for 5.2.x release families
3.0 2022-05-12 Updates for HTTP/2, invalid character exposures. Includes missing aFlex rule “multiple-content-

length-check”.

© Copyright 2020, 2021, 2022 A10 Networks, Inc. All Rights Reserved.

This document is provided on an "AS IS" basis and does not imply any kind of guarantee or warranty, including the warranties of merchantability, non-infringement or
fitness for a particular use. Your use of the information in this document or materials linked from this document is at your own risk. A10 Networks, Inc. reserves the
right to change or update the information in this document at any time.

http://www.a10networks.com/support/axseries/software-downloads
https://cwe.mitre.org/data/definitions/444.html
https://kb.cert.org/vuls/id/357312

	SUMMARY
	About HTTP Request Smuggling

	AFFECTED RELEASES
	WORKAROUNDS AND MITIGATIONS
	Mitigations using ACOS 4.1.1 and 4.1.4-GR1
	Mitigations using ACOS 5.1
	Mitigations using ACOS 5.2.x
	Additional Mitigations using ACOS 5.2.x and 4.1.4-GR1
	ACOS 5.2.1-P3/prior and 4.1.4-GR1
	ACOS 5.2.1-P4 and Later

	SOFTWARE UPDATES
	VULNERABILITY DETAILS
	RELATED LINKS
	ACKNOWLEDGEMENTS
	Modification History

