

1/6

Security Advisory

LOG4J - CVE-2021-44228, CVE-2021-45046, CVE-2021-
45105
PUBLISHED: DECEMBER 14, 2021 | LAST UPDATE: JANUARY 31, 2022

SUMMARY
In December 2021, Apache Log4j (logging.apache.org) [1] published security advisories detailing a number of critical security
issues. These vulnerabilities, if exploited, can allow attackers to construct specifically crafted packets which lead to Remote Code
Execution or Denial of Service (DoS) of exposed systems.

The following vulnerabilities reported by Apache Log4j are addressed in this document.

Item

Vulnerability ID

Score
Source

Score

Summary

1 CVE-2021-44228 CVSS 3.0 10.0 Critical log4j: Remote code execution in Log4j 2.x when logs contain an
attacker-controlled string value [2]

2 CVE-2021-45046 CVSS 3.0 9.0 Critical log4j-core: DoS in log4j 2.x with thread context message
pattern and context lookup pattern (incomplete fix for CVE-
2021-44228) [3]

3 CVE-2021-45105 CVSS 3.0 7.5 High log4j-core: DoS in log4j 2.x with Thread Context Map (MDC)
input data contains a recursive lookup and context lookup
pattern [4]

AFFECTED PRODUCTS AND RELEASES
The table below indicates the vulnerability status of A10 products for these vulnerabilities. Unless specific models or product
software releases are indicated, the vulnerability status should be considered to reflect all product models and software releases.

Product Vulnerability Status
A10 Thunder Not affected
A10 vThunder (Virtual Thunder) Not affected
A10 cThunder (Container Thunder) Not affected
A10 AX Series Not affected
A10 aGalaxy Releases Affected: 3.0.0 – 5.0.9 Releases Resolved: 5.0.10

A10 Harmony Controller Not affected
A10 Enterprise License Manager (ELM) Not affected

WORKAROUNDS AND MITIGATIONS
Even though A10 products are not affected by these vulnerabilities, A10 Thunder, vThunder and cThunder products can be used
to mitigate exposures to these vulnerabilities for applications and systems in the infrastructure they serve by applying ACOS
AFLEX policies.

AFLEX MITIGATIONS
This AFLEX policy for mitigating exploits of the Apache Log4j CVE-2021-44228 and CVE-2021-45105 vulnerabilities is based on
and has been tested based on information available to A10 at this time. Though A10 believes this policy can help mitigate
common exploits of CVE-2021-44228 and CVE-2021-45105, it may not mitigate all scenarios or variants of exploits for this
vulnerability.

AFLEX for Log4j CVE-2021-44228 and CVE-2021-45105 #####

This AFLEX script attempts to match enabled RegEx pattern(s) specified in

2/6

Security Advisory

the list variable "patterns" and take action on them. Messages that match
these patterns will be logged and dropped.

Matching is performed the against the following:

1. HTTP URI - URL-encoded
- URI as clear text

2. HTTP Headers - header name
- header value

3. HTTP PUT/POST - payload

Script Usage / Parameters

1. Choose the pattern (or patterns) you want enable in the "patterns".
list variable by un-commenting it (or them).

NOTES:
* Enabling multiple patterns will increase the processing overhead
for this AFLEX script
* All patterns can potentially drop/log valid HTTP request, put,
and post messages.
* Patterns indicated as more aggressive, are more prone to
dropping/logging otherwise valid HTTP messages.
* Though multiple patterns are supported, some patterns can
be supersets of others.

* DEFAULT SETTING: Least aggressive pattern.

2. Select the number nesting levels to decode for URL encode URI
by setting the 'decodeTrials' variable to a value of 1 or larger.

NOTES:
* For 'decodeTrials’ settings:
- 1 will allow 1 nesting level (minimum setting)
- 2 will allow 2 nesting level
- ... and so on

* DEFAULT SETTING: 5 (to allow 5 nesting levels).

3. Select whether logging facility Tag to be applied if desired.
Options include no tag or facility ('local0', 'local1'...) with priority level (DEBUG, INFO...)

WARNING:
* Logging matched string to SYSLOG servers could potentially put these servers
at risk if they are themselves exposed to this Log4j vulnerability.

* DEFAULT SETTING: "" (null - generic log)

4. Select whether to include logging of URI content upon matching
events by setting 'logUri' parameter to TRUE (1) or to disable
this content from being logged by setting to FALSE (0).

NOTES:
* URI can be very long, so this option is provided

* DEFAULT SETTING: TRUE (include URI for logging of matches
found in URI)
* Same for logPayload / logHeader

5. Choose the maximum amount that this AFLEX will scan into POST/PUT
payloads by setting the 'contentMax' variable to the number of
bytes to be inspected. A value of '0'indicates that the full
payload will be inspected.

NOTES:
* Selection of this value can notably impact overhead for
processing HTTP through the ACOS device for POST/PUT
operations.
* There is a trade-off here. The lower the payload size,
the lower the detectability for this CVE.
* Alternately, with larger sizes comes more processing
overhead, though better detection.

3/6

Security Advisory

* DEFAULT SETTING: 0 (all payloads)

Other Common Customizations

1. Monitor & Log Only
* To monitor and log matches for Log4j HTTP messages without
any actions taken on the traffic:
- Simply comment out the 'reject' operations in the script
content.

Other Notes

1. Log messages in the local ACOS event log and as shared with
SYSLOG servers configured in the ACOS system will be truncated to
1024 bytes
* Accordingly, detected/matching information may not be
included or may be partially included in log entries. This will
especially be the case where the matching content is deeper than
1024 bytes into the associated being scanned content.

Revision History

v1.0 2021-12-20 Initial release
v2.0 2021-12-27 Update patterns for CVE-2021-45105 ctx:<name> case, raise decodeTrials to 5

#########################

when HTTP_REQUEST {

 ####### Set Pattern Parameters Here ####
Select the pattern from this list and insert in set pattens below
includes CVE-2021-45105 addition to detect ctx:<name> case
least aggressive pattern (still fewer false positives dropped) with ctx case
{\$(\\)*\{\s*(j|c|(\$\{.+(j|c)\})+)+}
{\$\{\s*(j|c|(\$\{.+(j|c)\})+)+}
less aggressive pattern (fewer false positives dropped)
{\$\{\s*(j|c|\$\{.+(-|:)(j|c)\})}
{\$\{\s*(j|c|\$?\{.+?\})}
{\$\{\s*(j|c|\$\{.+(j|c)\})}
without CVE-2021-45105 addition to detect ctx:<name> case
{\$(\\)*\{\s*(j|(\$\{.+j\})+)+}
{\$\{\s*(j|(\$\{.+j\})+)+}
less aggressive pattern (fewer false positives dropped)
{\$\{\s*(j|\$\{.+(-|:)j\})}
{\$\{\s*(j|\$?\{.+?\})}
{\$\{\s*(j|\$\{.+j\})}
very aggressive pattern (probably many false positives dropped)
{\$\{.+}
placeholder for future patterns
{ placeholder }
 set patterns {
 {\$(\\)*\{\s*(j|c|(\$\{.+(j|c)\})+)+}
 }

 ### max number of times we want to decode nested URL encoding
 set decodeTrials 5

 ### logging format, default to true, set to 0 to enable remote
 set logTag ""
set logTag "local0.6"
set logTag "local0.5"
set logTag "local1.5"

 ### logging detail URI, default to true, set to 0 to disable
 set logUri 1
 set logHeader 1
 set logPayload 1

 ### Max size to do collect, 0 if collect all
 ## default collect all
 set contentMax 0

 ###### End Parameters ########

4/6

Security Advisory

 set decodeUri [HTTP::uri]
 set rawUri ""
 set origUri $decodeUri

 # decoding nested uri
 for {set i 0} {($i <= $decodeTrials) && ($decodeUri ne $rawUri) } {incr i} {

 # match at each round?
 foreach pattern $patterns {
 if {[string tolower $decodeUri] matches_regex $pattern} {
 if {$logUri == 1} {
 set logMsg $origUri
 } else {
 set logMsg ""
 }
 log $logTag "log4j2 -- decoded $i times, match uri $logMsg to regex $pattern"
 reject
 return
 }
 }
 set rawUri $decodeUri
 set decodeUri [URI::decode $rawUri]

 }

 if {$i >= $decodeTrials} {
 log $logTag "log4j2 -- exceeding max decode attempts $decodeTrials"
 reject
 return
 }

 ### HTTP headers ###
 ### Checks header name and header value
 foreach header [HTTP::header names] {
 set val [HTTP::header value $header]
 set vlower [string tolower $val]
 set nlower [string tolower $header]

 foreach pattern $patterns {
 if {$vlower matches_regex $pattern} {
 if {$logHeader == 1} {
 set logMsg $val
 } else {
 set logMsg ""
 }
 log $logTag "log4j2 -- match header value $logMsg to regex $pattern"
 reject
 return
 }

 if {$nlower matches_regex $pattern} {
 if {$logHeader == 1} {
 set logMsg $header
 } else {
 set logMsg ""
 }
 log $logTag "log4j2 -- match header name $logMsg to regex $pattern"
 reject
 return
 }

 }
 }
 ### end header processing ###
 ### Checking for POST and PUT
 if {([HTTP::method] eq "POST") || ([HTTP::method] eq "PUT")} {
 if { [HTTP::header exists Content-Length] } {
 set contentLen [HTTP::header Content-Length]
 if {$contentMax != 0} {
 if {$contentMax < $contentLen} {
 set contentLen $contentMax
 }

5/6

Security Advisory

 }
 HTTP::collect $contentLen
 } else {
 if {$contentMax != 0} {
 HTTP::collect $contentMax
 } else {
 HTTP::collect
 }
 }
 }
}

when HTTP_REQUEST_DATA {
 set payload [HTTP::payload]
 set rawPayload ""
 set origPayload $payload

 for {set i 0} {($i <= $decodeTrials) && ($payload ne $rawPayload) } {incr i} {
 set plower [string tolower $payload]
 foreach pattern $patterns {
 if {$plower matches_regex $pattern} {
 if {$logPayload == 1} {
 set logMsg $origPayload
 } else {
 set logMsg ""
 }
 log $logTag "log4j2 -- match payload $logMsg to regex $pattern"
 reject
 return
 }
 }

 set rawPayload $payload
 set payload [URI::decode $rawPayload]
 }

 if {$i >= $decodeTrials} {
 log $logTag "log4j2 -- exceeding max decode attempts $decodeTrials"
 reject
 return
 }

}

SOFTWARE UPDATES
Not available.

VULNERABILITY DETAILS
The following table shares brief descriptions for the vulnerabilities addressed in this document.

Vulnerability ID Description
CVE-2021-44228 Apache Log4j2 <=2.14.1 JNDI features used in configuration, log messages, and parameters do not protect

against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log messages or
log message parameters can execute arbitrary code loaded from LDAP servers when message lookup
substitution is enabled. From log4j 2.15.0, this behavior has been disabled by default. In previous releases (>2.10)
this behavior can be mitigated by setting system property "log4j2.formatMsgNoLookups" to “true” or it can be
mitigated in prior releases (<2.10) by removing the JndiLookup class from the classpath (example: zip -q -d log4j-
core-*.jar org/apache/logging/log4j/core/lookup/JndiLookup.class).

CVE-2021-45046 It was found that the fix to address CVE-2021-44228 in Apache Log4j 2.15.0 was incomplete in certain non-
default configurations. This could allows attackers with control over Thread Context Map (MDC) input data when
the logging configuration uses a non-default Pattern Layout with either a Context Lookup (for example,
$${ctx:loginId}) or a Thread Context Map pattern (%X, %mdc, or %MDC) to craft malicious input data using a JNDI
Lookup pattern resulting in a denial of service (DOS) attack. Log4j 2.15.0 restricts JNDI LDAP lookups to localhost
by default. Note that previous mitigations involving configuration such as to set the system property

6/6

Security Advisory

`log4j2.noFormatMsgLookup` to `true` do NOT mitigate this specific vulnerability. Log4j 2.16.0 fixes this issue by
removing support for message lookup patterns and disabling JNDI functionality by default. This issue can be
mitigated in prior releases (<2.16.0) by removing the JndiLookup class from the classpath (example: zip -q -d
log4j-core-*.jar org/apache/logging/log4j/core/lookup/JndiLookup.class).

CVE-2021-45105 Apache Log4j2 versions 2.0-alpha1 through 2.16.0 (excluding 2.12.3) did not protect from uncontrolled recursion
from self-referential lookups. This allows an attacker with control over Thread Context Map data to cause a denial
of service when a crafted string is interpreted. This issue was fixed in Log4j 2.17.0 and 2.12.3.

RELATED LINKS
Ref # General Link
[1] Apache Log4j Security Vulnerabilities
[2] NIST NVD CVE-2021-44228
[3] NIST NVD CVE-2021-45046
[4] NIST NVD CVE-2021-45105

ACKNOWLEDGEMENTS
None

MODIFICATION HISTORY
Revision Date Description
1.0 2021-12-14 Initial Publication
1.1 2021-12-20 Changed aGalaxy from not affected to being further investigated. Added AFLEX v1.0 mitigation policy.
2.0 2021-12-27 Update patterns for CVE-2021-45105 ctx:<name> case, raise decodeTrials to 5
2.1 2022-01-31 Update aGalaxy exposed and resolved releases

© Copyright 2021, 2022 A10 Networks, Inc. All Rights Reserved.

This document is provided on an "AS IS" basis and does not imply any kind of guarantee or warranty, including the warranties of merchantability, non-infringement or
fitness for a particular use. Your use of the information in this document or materials linked from this document is at your own risk. A10 Networks, Inc. reserves the
right to change or update the information in this document at any time.

